Tag Archives: opensource

Can You Keep a Secret?

We all have secrets. Sometimes, these are guilty pleasures that we try to keep hidden, like watching cheesy reality TV or indulging in strange comfort food. We often worry:

“How do we keep the secret safe?”

“What could happen if someone finds out the secret?”

“Who is keeping a secret?”

“What happens if we lose a secret?”

At Bazaarvoice, our security team starts with these same questions when it comes to secret management. They are less interested in trivial secrets like who left their dishes in the office sink or who finished the milk. Instead, they focus on the secrets used in the systems that power a wide range of products for the organization. They include:

  • API keys and tokens
  • Database connection strings that contain passwords
  • Encryption keys
  • Passwords

With hundreds of systems and components depending on secrets at Bazaarvoice, enumerating them and answering the above questions quickly, consistently and reliably can become a challenge without guiding standards. 

This post will discuss secret management and explain how Bazaarvoice implemented a Secret Catalog using open-source software. The post will provide reusable examples and helpful tips to reduce risk and improve compliance for your organization. Let’s dive in!

Secrets Catalog

Bazaarvoice is ISO27001 compliant and ensures its systems leverage industry standard tools and practices to store secrets securely. However, it isn’t always in the same place, and secrets can be stored using different tools. Sometimes AWS Secret Manager makes sense; other times, AWS KMS is a better choice for a given solution. You may even have a multi-cloud strategy, further scattering secrets. This is where a Secrets Catalog is extremely useful, providing a unified view of secrets across tools and vendors.

It may sound a little boring, and the information captured isn’t needed most of the time. However, in the event of an incident, having a secret catalog becomes an invaluable resource in reducing the time you need to resolve the problem.

Bazaarvoice recognized the value of a secrets catalog and decided to implement it. The Security Team agreed that each entry in the catalog must satisfy the following criteria:

  • A unique name
  • A good description of its purpose
  • Clear ownership
  • Where it is stored
  • A list of dependent systems
  • References to documentation to remediate any related incident, for example, how to rotate an API key

Crucially, the value of the secret must remain in its original and secure location outside of the Catalog, but it is essential to know where the secret is stored. Doing so avoids a single point of failure and does not hinder any success criteria.

Understanding where secrets are stored helps identify bad practices. For example, keeping an SSH key only on team members’ laptops would be a significant risk. A person can leave the company, win the lottery, or even spill a drink on their laptop (we all know someone!). The stores already defined in the catalog guide people in deciding how to store a new secret, directing them to secure and approved tools resistant to human error.

Admittedly, the initial attempt to implement the catalog at Bazaarvoice didn’t quite go to plan. Teams began meeting the criteria, but it quickly became apparent that each team produced different interpretations stored in multiple places and formats. Security would not have a unified view when multiple secret catalogs would ultimately exist. Teams would need additional guidance and a concrete standard to succeed.

We already have a perfect fit for this!

Bazaarvoice loves catalogs. After our clients, they might be our favourite thing. There is a product catalog for each of our over ten thousand clients, a data catalog, and, most relevantly, a service catalog powered by Backstage.

“Backstage unifies all your infrastructure tooling, services, and documentation to create a streamlined development environment from end to end.”

https://backstage.io/docs/overview/what-is-backstage

Out of the box, it comes with core entities enabling powerful ecosystem modeling:

https://backstage.io/docs/features/software-catalog/system-model#ecosystem-modeling

As shown in the diagram above, at the core of the Backstage model are Systems, Components, and Resources, the most relevant entities for secret management. You can find detailed descriptions of each entity in the Backstage modeling documentation. Briefly, they can be thought about as follows:

System – A collection of lower-level entities, including Components and Resources, acting as a layer of abstraction.

Component – A piece of software. It can optionally produce or consume APIs.

Resource – The infrastructure required by Components to operate.

New Resource Types

Resources are one of the Backstage entities used to represent infrastructure. They are a solid fit for representing secrets, allowing us to avoid writing custom in-house software to do the same job. Therefore, we defined two new Resource Types: secret and secret-store.

Tip: Agree on the allowed Types upfront to avoid a proliferation of variations such as ‘database’ and ‘db’ that can degrade searching and filtering.

Having already invested the effort in modeling the Bazaarvoice ecosystem, adding the necessary YAML to define secrets and secret stores was trivial for teams. 

Example minimal secret store:

apiVersion: backstage.io/v1alpha1
kind: Resource
metadata:
  name: aws-secrets-manager
  description: Resources of type 'secret' can depend on this Resource to indicate that it is stored in AWS Secrets Manager
spec:
  type: secret-store
  owner: team-x

Example minimal secret:

apiVersion: backstage.io/v1alpha1
kind: Resource
metadata:
  name: system-a-top-secret-key
  description: An example key stored in AWS Secrets Manager
  links:
    - url:https://internal-dev-handbook/docs/how-to-rotate-secrets 
      title: Rotation guide
spec:
  type: secret
  owner: team-1
  system: system-a
  dependsOn:
    - resource:aws-secrets-manager

Finally, to connect the dots to existing Systems, Components, and Resources, simply add a dependsOn section to their definitions. For example:

apiVersion: backstage.io/v1alpha1
kind: Component
metadata:
  name: system-a-component
  ...
spec:
  ...
  dependsOn:
    - resource:system-a-top-secret-key

How does it look?

It’s fantastic in our eyes! Let’s break down the image above.

The “About” section explains the secret, including which system it’s associated with, its owner, and the fact that it’s currently in production. It also provides a link to the source code and a way to report issues or mistakes, such as typos.

The “Relations” section, powered by an additional plugin, provides a visual and interactive graph that displays the relationships associated with the secret. This graph helps users quickly build a mental picture of the resources in the context of their systems, owners, and components. Navigating through this graph has proven to be an effective and efficient mechanism for understanding the relationships associated with the secret.

The “Links” section offers a consistent place to reference documentation related to secret management. 

Lastly, the “PagerDuty” plugin integrates with the on-call system, eliminating the need for manual contact identification during emergency incidents.

The value of Backstage shines through the power of the available plugins. Searching and filtering empower discoverability, and the API opens the potential for further integrations to internal systems.

Keeping it fresh

Maintaining accurate and up-to-date documentation is always a challenge. Co-locating the service catalog with related codebases helps avoid the risk of it becoming stale and has become a consideration for reviewing and approving changes. 

We are early in our journey with this approach to a secrets catalog and aim to share our incremental improvements in further blog posts as we progress.

Flyte 1 Year In

On the racetrack of building ML applications, traditional software development steps are often overtaken. Welcome to the world of MLOps, where unique challenges meet innovative solutions and consistency is king. 

At Bazaarvoice, training pipelines serve as the backbone of our MLOps strategy. They underpin the reproducibility of our model builds. A glaring gap existed, however, in graduating experimental code to production.

Rather than continuing down piecemeal approaches, which often centered heavily on Jupyter notebooks, we determined a standard was needed to empower practitioners to experiment and ship machine learning models extremely fast while following our best practices.

(cover image generated with Midjourney)

Build vs. Buy

Fresh off the heels of our wins from unifying our machine learning (ML) model deployment strategy, we first needed to decide whether to build a custom in-house ML workflow orchestration platform or seek external solutions.

When deciding to “buy” (it is open source after all), selecting Flyte as our workflow management platform emerged as a clear choice. It saved invaluable development time and nudged our team closer to delivering a robust self-service infrastructure. Such an infrastructure allows our engineers to build, evaluate, register, and deploy models seamlessly. Rather than reinventing the wheel, Flyte equipped us with an efficient wheel to race ahead.

Before leaping with Flyte, we embarked on an extensive evaluation journey. Choosing the right workflow orchestration system wasn’t just about selecting a tool but also finding a platform to complement our vision and align with our strategic objectives. We knew the significance of this decision and wanted to ensure we had all the bases covered. Ultimately the final tooling options for consideration were Flyte, Metaflow, Kubeflow Pipelines, and Prefect.

To make an informed choice, we laid down a set of criteria:

Criteria for Evaluation

Must-Haves:

  • Ease of Development: The tool should intuitively aid developers without steep learning curves.
  • Deployment: Quick and hassle-free deployment mechanisms.
  • Pipeline Customization: Flexibility to adjust pipelines as distinct project requirements arise.
  • Visibility: Clear insights into processes for better debugging and understanding.

Good-to-Haves:

  • AWS Integration: Seamless integration capabilities with AWS services.
  • Metadata Retention: Efficient storage and retrieval of metadata.
  • Startup Time: Speedy initialization to reduce latency.
  • Caching: Optimal data caching for faster results.

Neutral, Yet Noteworthy:

  • Security: Robust security measures ensuring data protection.
  • User Administration: Features facilitating user management and access control.
  • Cost: Affordability – offering a good balance between features and price.

Why Flyte Stood Out: Addressing Key Criteria

Diving deeper into our selection process, Flyte consistently addressed our top criteria, often surpassing the capabilities of other tools under consideration:

  1. Ease of Development: Pure Python | Task Decorators
    • Python-native development experience
  2. Pipeline Customization
    • Easily customize any workflow and task by modifying the task decorator

  3. Deployment: Kubernetes Cluster
  4. Visibility
    • Easily accessible container logs
    • Flyte decks enable reporting visualizations

  5. Flyte’s native Kubernetes integration simplified the deployment process.

The Bazaarvoice customization

As with any platform, while Flyte brought many advantages, we needed a different plug-and-play solution for our unique needs. We anticipated the platform’s novelty within our organization. We wanted to reduce the learning curve as much as possible and allow our developers to transition smoothly without being overwhelmed.

To smooth the transition and expedite the development process, we’ve developed a cookiecutter template to serve as a launchpad for developers, providing a structured starting point that’s standardized and aligned with best practices for Flyte projects. This structure empowers developers to swiftly construct training pipelines.

The most relevant files provided by the template are:

  • Pipfile    - Details project dependencies 
  • Dockerfile - Builds docker container
  • Makefile   - Helper file to build, register, and execute projects
  • README.md  - Details the project 
  • src/
    • tasks/
    • Workflows.py (Follows the Kedro Standard for Data Layers)
      • process_raw_data - workflow to extract, clean, and transform raw data 
      • generate_model_input - workflow to create train, test, and validation data sets 
      • train_model - workflow to generate a serialized, trained machine learning model
      • generate_model_output - workflow to prevent train-serving skew by performing inference on the validation data set using the trained machine learning model
      • evaluate - workflow to evaluate the model on a desired set of performance metrics
      • reporting - workflow to summarize and visualize model performance
      • full - complete Flyte pipeline to generate trained model
  • tests/ - Unit tests for your workflows and tasks
  • run - Simplifies running of workflows

In addition, a common challenge in developing pipelines is needing resources beyond what our local machines offer. Or, there might be tasks that require extended runtimes. Flyte does grant the capability to develop locally and run remotely. However, this involves a series of steps:

  • Rebuild your custom docker image after each code modification.
  • Assign a version tag to this new docker image and push it to ECR.
  • Register this fresh workflow version with Flyte, updating the docker image.
  • Instruct Flyte to execute that specific version of the workflow, parameterizing via the CLI.

To circumvent these challenges and expedite the development process, we designed the template’s Makefile and run script to abstract the series of steps above into a single command!

./run —remote src/workflows.py full

The Makefile uses a couple helper targets, but overall provides the following commands:

  • info       - Prints info about this project
  • init       - Sets up project in flyte and creates an ECR repo 
  • build      - Builds the docker image 
  • push       - Pushes the docker image to ECR 
  • package    - Creates the flyte package 
  • register   - Registers version with flyte
  • runcmd     - Generates run command for both local and remote
  • test       - Runs any tests for the code
  • code_style - Applies black formatting & flake8

Key Triumphs

With Flyte as an integral component of our machine learning platform, we’ve achieved unmatched momentum in ML development. It enables swift experimentation and deployment of our models, ensuring we always adhere to best practices. Beyond aligning with fundamental MLOps principles, our customizations ensure Flyte perfectly meets our specific needs, guaranteeing the consistency and reliability of our ML models.

Closing Thoughts

Just as racers feel exhilaration crossing the finish line, our team feels an immense sense of achievement seeing our machine learning endeavors zoom with Flyte. As we gaze ahead, we’re optimistic, ready to embrace the new challenges and milestones that await. 🏎️

If you are drawn to this type of work, check out our job openings.

Open sourcing cloudformation-ruby-dsl

Cloudformation is a powerful tool for building large, coordinated clusters of AWS resources. It has a sophisticated API, capable of supporting many different enterprise use-cases and scaling to thousands of stacks and resources. However, there is a downside: the JSON interface for specifying a stack can be cumbersome to manipulate, especially as your organization grows and code reuse becomes more necessary.

To address this and other concerns, Bazaarvoice engineers have built cloudformation-ruby-dsl, which turns your static Cloudformation JSON into dynamic, refactorable Ruby code.

The DSL closely mimics the structure of the underlying API, but with enough syntactic sugar to make building Cloudformation stacks less painful.

We use cloudformation-ruby-dsl in many projects across Bazaarvoice. Now that it’s proven its value, and gained some degree of maturity, we are releasing it to the larger world as open source, under the Apache 2.0 license. It is still an earlier stage project, and may undergo some further refactoring prior to it’s v1.0 release, but we don’t anticipate major API changes. Please download it, try it out, and let us know what you think (in comments below, or as issues or pull request on Github).

A big thanks to Shawn Smith, Dave Barcelo, Morgan Fletcher, Csongor Gyuricza, Igor Polishchuk, Nathaniel Eliot, Jona Fenocchi, and Tony Cui, for all their contributions to the code base.